Remote Workflows using Parsl and funcX

MIRGE-Com Main sin
Python Base lan
MPI Underlyi
mpi4py MPI sup
pyopencl OpenCL
pocl OpenCL
conda Environr

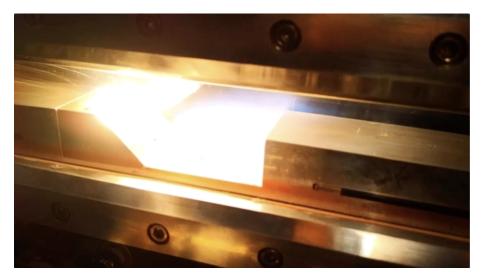
Tested	NotTested	Coverage
74		91%
291	66	77%
87		93%
154	54	65%
26	9	65%
40		98%
85	6	93%
22		95%

CEESD Introduction


- ► CEESD is a DOE-funded, integrated center hosted at the University of Illinois, with computer scientists, computational scientists, and experimentalists working in concert
- Established a suite of physics-targeted experiments for model development, validation, integration, and UQ
- Principal code (MIRGE-Com: DG NS + combustion) being developed within our CS approach
- Experimental target case set, with data acquired; corresponding computational prediction underway

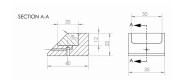
CEESD Prediction Target

ACT-II Experimental Facility



^{*}Experimental images from 2021 CEESD review slides

Preliminary Prediction Target

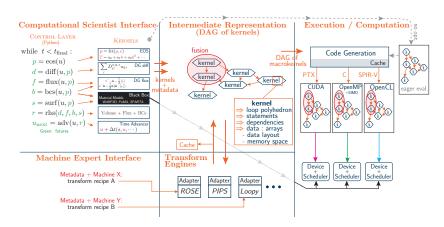

Y2 Simulation Inputs

- Geometry (CAD)
- ► Facility stagnation conditions measured upstream of nozzle
- ► Fuel flow conditions (mass flow rate and composition)

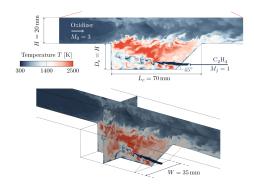
Y2 flow conditions			
tunnel flow conditions			
Total Pressure (bar)	2.74		
Total Temperature (K)	2076.43		
Mass flow rate (g/s)	30.18		
O ₂ mass fraction	0.273		
fuel flow conditions			
Mass flow rate (g/s)	0.1747		
Composition	$50:50 \text{ H}_2/\text{C}_2\text{H}_4$		
Equivalence ratio	0.079		

Y2 Prediction: Quantities of Interest

- Primary Qol
 - Material temperature history
 - Mass loss
- Secondary Qol
 - Material structure
 - Flame characteristics
 - Tunnel wall pressures
 - Surface temperature history
 - Gas dynamics (shocks and angles)



Simulation Tool: MIRGE-Com


- Discontinuous Galerkin
- Compressible Navier-Stokes and combustion
- CS-targeted approach

Simulation Strategy

- ► Coupled (2-way) MIRGE-Com/MIRGE-Heat simulations
- Surface state (T, Y_i, σ) passed to mircoscale physics models to assess surface degradation, material properties
- Post-process results to assess Qol
- Suite of simulations for Uncertainty Quantification

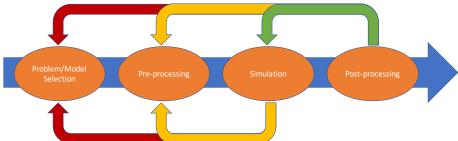
Workflow Streamlining with Parsl

Workflow

Anticipated Basic Workflow

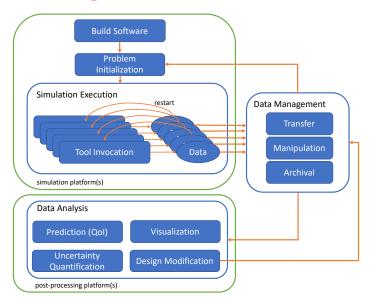
- ► Generate mesh
- Simulation initialization
- Baseline simulations (coarse resolution/simplified physics)
- Increase simulation fidelity
- ► Ignition and combustion
- Post-processing Qol
- Cycle can be month⁺ sized

Several iterations for Uncertainty Quantification


- ► Simulation parameter modification and restart
- Day to week size runs

Generalized Workflow Management

Goal: Reduce overall simulation time by streamlining inter-connected simulation tasks


- Expected iterations
 - multiple submissions
- Unexpected, but anticipated iterations
 - mesh issues (instability)
 - software bugs
- Unexpected iterations
 - mistakes

Workflow Management Realized

Workflow Management with Parsl/FuncX

Parsl

- Workflow management tool
- ▶ Use Python to piece together external components or functions
- Automate data flow between computations
- Support for execution on a wide-variety of compute resources
- Execute workflows in parallel

FuncX

- Function as a service
 - Built on Parsl

le-enabled Scramiet Design

► Facilitate distributed processing (across platforms) using *Globus*

Target workflow

- ► Automate pre-process, compute, and post-process workflow
- Distributed across platforms
- ▶ Bring results back to a centralized location for easy access/display

Workflow Management Progress

Progress to date

- ► Parsl-enhanced MIRGE-Com driver (Doug Friedel)
- ► Kickoff from local server using Parsl
- Batch submit on remote host (LLNL Quartz) using FuncX
- ► Transfer of simulation data back to local server through Globus

Next steps

- Transfer of in-progress simulation data
- ▶ Enhance driver to handle fault control, post-mortem analysis

Questions?

This material is based in part upon work supported by the Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0003963.

