

Using funcX to enable better federated learning over serverless

Matt Baughman

Parsl & funcX Fest Sep. 13, 2022

Making things easy...

But it doesn't need to be...

What is Federated Learning?

- Distributed data sources
- Model training at those sources
- Some aggregation mechanism
- Assists in security
- Examples
 - ➢ GBoard and Apple
 - > Siloed data
 - Edge compute/network constrained
 - > Healthcare
- Challenges
 - Network maintenance
 - Manual configuration
 - Hardware heterogeneity
 - Solution completeness

Our solution: FLoX–Federated Learning on funcX

- funcX-ify relevant functions
 - I.e., those that could be relevant for deployment
- Launches relevant training and inference tasks across all endpoints
 - > Manually configurable
 - > Or pulled from .yaml
- Simply define a model, point to the data, and flox()

What sets FLoX apart?

- First and foremost
 - > Single line invocation
- Serverless
 - All the reasons funcX is great
 - > Now for FL!
- End-to-end
 - > Caveats...
- Use existing funcX endpoints
- Any tensorflow defined model
 - No model architecture constraints

```
federated_learning(
    global_model=tf_model,
    endpoint_ids=[ep1, ep2, ep3],
    loops=10,
    epochs=10,
    data_source="keras",
    keras_dataset="mnist",
    num_samples=1000
```


Initial Experiments

- Performance
 - Comparable final accuracies to non-serverless frameworks
 - Faster convergence wrt time
 - Global model outperforms all individual models
 - Demonstrated effective even on small quantities of data
- System
 - Extremely low overhead
 - Demonstration of transfer costs
 - "Compute where the data is"

University of Chicago Department of Computer Science

globus 🖾 labs 🛛

Using FLoX

1. (flox) matt@matts-MacBook-Pro ~ % pip install pyflox

2. from flox.flox import federated_learning

```
3. federated_learning(
    tf_model,
    endpoint_list,
    loops=10,
    epochs=10,|
    data_source,
    dataset
)
```

4. Wonder what to do with all the time you saved...

Future Work

- More functionality!
 - Adding aggregation functions
 - Automated accelerator support
 - Better integration for finding/using diverse data
- Autotuning FL
 - Balancing workloads for device capability
 - Epochs vs loops vs data samples
 - Initial results
 - Fault tolerance and dropping devices
- Cost-aware FL
 - If data can be moved, should it?
 - Integration with DELTA
 - Our automated function placement system for funcX
- FL for system performance
 - Learn performance embeddings with FL across systems and functions

University of Chicago Department of Computer Science

Figure 1: Comparison of different numbers of epochs per round for running FL on CIFAR-10.

Figure 2: Comparison of balancing techniques to perform FL between two high powered endpoints and two additional endpoints with one-eighth the capabilities.

Key Takeaways

- FLoX makes FL easy using funcX
 - Serverless has many advantages
 - funcX is the best of them
- No need to sacrifice performance for simplicity
- Makes FL accessible for FL or data experimentation

Acknowledgements

Rural

A

Kyle Chard

Panos Patros

Omer Rana

FLoX Contributors

Ian Foster

Nikita Kotsehub

Ryan Chard

Tyler Groshong

Nathaniel Hudson

Relevant Publications

[1] **Kotesehub, N., Baughman, M.,** Chard, R., Hudson, N., Patros, P., Rana, O., Foster, I. & Chard, K. (2022). FLoX: Federated Learning with FaaS at the Edge. In 18th IEEE International Conference on e-Science (forthcoming).

[2] **Baughman, M.**, Foster, I. & Chard, K. (2022). Exploring Tradeoffs in Federated Learning on Serverless Computing Architectures. In 18th IEEE International Conference on e-Science: Posters (forthcoming).

Questions?

Contact—mbaughman@uchicago.edu

