#### Streamlining Computation and Communication for Distributed Science Workflows

Engin Arslan University of Nevada Reno





University of Nevada, Reno

## **Distributed Science**

- Remote data processing
  - Data is moved from data collection facilities to HPC clusters to analyze
- Collaborative projects
  - Data sharing to enable collaboration
- Reproducible research
  - Central repositories to store data







# How to process large-scale remote data?

- 1. Download first, process later

  - ☑ Need for large staging space → Potentially increased storage cost
- 2. Streamline compute and transfer
  - Mismatch of compute and transfer speeds
  - Performance variability due to interference

## End-to-End Workflow Parallelism



### Real-time Data Transfer Tuning with HARP



#### **Parsl Integration**



- Supports computational parallelism
- Easy to integrate new data transfer module
- Responsive and helpful development team

#### Thanks!



University of Nevada, Reno