Parsl and funcX Driven Scientific Workflows in HPC

CEESD Introduction

- CEESD is a DOE-funded, integrated center hosted at the University of Illinois, with computer scientists, computational scientists, and experimentalists working in concert
- Established a suite of physics-targeted experiments for model development, validation, integration, and UQ
- Principal code (*MIRGE-Com*: DG NS + combustion) being developed within our CS approach
- Experimental target case set, with data acquired; corresponding computational prediction underway

CEESD Prediction Target

ACT-II Experimental Facility

*Experimental images from 2021 CEESD review slides

Preliminary Prediction Target

Y2 Simulation Inputs

- Geometry (CAD)
- ▶ Facility stagnation conditions measured upstream of nozzle
- ▶ Fuel flow conditions (mass flow rate and composition)

Y2 flow conditions	
tunnel flow conditions	
Total Pressure (bar)	2.74
Total Temperature (K)	2076.43
Mass flow rate (g/s)	30.18
O_2 mass fraction	0.273
fuel flow conditions	
Mass flow rate (g/s)	0.1747
Composition	50:50 H_2/C_2H_4
Equivalence ratio	0.079

Y2 Prediction: Quantities of Interest

Primary Qol

- Material temperature history
- Mass loss
- Secondary Qol
 - Material structure
 - Flame characteristics
 - Tunnel wall pressures
 - Surface temperature history
 - Gas dynamics (shocks and angles)

Simulation Tool: MIRGE-Com

- Discontinuous Galerkin
- Compressible Navier-Stokes and combustion
- CS-targeted approach

The Center for Exascale-enabled Scramjet Design

Simulation Strategy

- Coupled (2-way) MIRGE-Com/MIRGE-Heat simulations
- Surface state (T, Y_i, σ) passed to mircoscale physics models to assess surface degradation, material properties
- Post-process results to assess Qol
- Suite of simulations for Uncertainty Quantification

Additional Simulation Tools

Future simulation tools coupled across length and time scales

- Oxidation kinetics
- Radiation
- Fracture
- Microstructure/conduction

Workflow Streamlining with Parsl

Workflow Management

Goal: Reduce overall simulation time by streamlining inter-connected simulation tasks

- Expected iterations
 - multiple submissions
- Unexpected, but anticipated iterations
 - mesh issues (instability)
 - software bugs
- Unexpected iterations
 - mistakes

Workflow Management Realized

The Center for Exascale-enabled Scramjet Design

Workflow Management with Parsl/FuncX

Parsl

- Workflow management tool
- Use Python to piece together external components or functions
- Automate data flow between computations
- Support for execution on a wide-variety of compute resources
- Execute workflows in parallel

FuncX

- Function as a service
- Built on Parsl
- ► Facilitate distributed processing (across platforms) using Globus

Target workflow

- Automate pre-process, compute, and post-process workflow
- Distributed across platforms
- Bring results back to a centralized location for easy access/display

Workflow Management with Parsl/FuncX

Questions?

This material is based in part upon work supported by the Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0003963.

