

Automated, Cost-Aware FaaS in Heterogeneous Environments

Matt Baughman

Parsl & funcX Fest October 28, 2021

The State of Heterogeneity...

	НРС	Cloud	Edge
Description	 System-level homogeneity Enterprise parts Increasingly accelerators 	 Configurable Enterprise parts Extensive resources accelerators 	 Integrated systems Varying infrastructure Low-power, consumer components
Related Metrics (time and)	Allocation unitsQueueing overheads	 Allocation units \$\$\$ (money) 	Resource capabilityOverhead costs
Current Examples	 DOE Computing Infrastructure University Clusters 	AWSGoogle CloudChameleon	 Raspberry Pi Amazon Greengrass Particle Cloud

The State of Heterogeneity... Applications

Instrument Control

- > Real-time
- > Time-sensitive
- Compute offloading

HPC workloads

- > Configuration dependent
- Resource selection
- Deployment and scaling
- Edge and sensor networks
 - > Wide ranging information
 - \succ Low power \rightarrow needs execution environment
- Machine Learning/ Artificial Intelligence
 - Utilization of accelerators/ ASICs
 - Data and location dependent

Serverless enables compute anywhere...

- An ever growing number of tasks...
- An ever growing number of resources to use...
- How do we enable effective distribution?

("modern" distributed system)

Cost-Aware Execution in Automated Serverless

Delta+ Overview

- Automated coordination of FaaS ecosystems
 - Built on top of funcX
- Unifying compute across the edge, HPC, and cloud
- Design components
 - Remove endpoint selection from end-users
 - Allow for tunable optimization metrics
 - Enable intelligent use of all available resources
 - Handle dynamic ecosystems
 - Dynamic resource provisioning
 - Multidimensional cost and constraint satisfaction

Kumar, Baughman, et al. "Coding the computing continuum: Fluid function execution in heterogeneous computing environments." In *Heterogeneity in Computing Workshop at IPDPS* (IPDPSW) pp. 66-75. 2021.

University of Chicago Department of Computer Science

from delta import DeltaClient

Define function to be scheduled via Delta
def classify(img):
 import tensorflow as tf
 ...
 return model.predict(img)

Request task to run function on image img = ... task_id = client.run(img, function_id=func_id)

Retrieve task result (task id b)

res = client.get_result(task_id, block=True)

DELTA+: Costs and Constraints

- Distribute tasks to different resources with different costs
- Relating cost vs. time
 - Different resources have different optimization criteria
- User definition
 - Allows for expression of tradeoffs and weighting
 - E.g., \$1 ≈ 10 minutes
 - > Costs at different levels

- Constraint satisfaction
 - Cost budgets
 - Time budgets
 - > HPC Allocations
- How do we optimize under constraints?

DELTA+: Optimization

Deadlines

- Allows for prioritization of faster or more time-effective resources for task allocation
- > When do you need the compute done?
- Cost constraints
 - Absolute budgets
 - Prioritizes cost-effective resources
- Automated optimization definition
 - Multiple constraints make resource selection difficult
 - Solution: select resources to maximize the likelihood of workload completion under constraint

DELTA+: Resource Provisioning using funcX

- ✤ AWS Resource Provider
- Plug and play with DELTA+
 - Expose the provider by associating it with an endpoint and assigning relevant costs
- Nonlinear tradeoffs due to overhead, imperfect scaling, and time costs

DELTA+: Experimental Results

- Incorporate probabilistic task placement
- Experimental setup
 - Simulated 8 endpoints of various costs and performance levels
 - Costs initially known, performance hidden
 - Launched 10 batches of 100 tasks
 - Optimized for performance per dollar
- Results
 - Learned relative performance to within
 10% of optimal in 5 batches

Batch #

Current and Future Development

- Incorporate more diverse resource providers for HPC and cloud resources
- Extend Delta+ further into the edge
 - Port compute request functionality to extreme LP devices
 - Managed function execution across a hierarchical ecosystem
- Develop heuristic free control framework that exceeds probabilistic allocation
- Large scale deployments
 - Using resource providers, test Delta+'s capabilities at 1,000+ endpoint scale
- Automate installation and configuration
 - Manage resource and worker configuration using funcX

Conclusion

Delta							
Performance Predictors							
Transfer Predictors	Runtime P	edictors	Cold sta	rt Predictors			
†2				3↑			
EndpointMonitor	TaskScheduler	Transfe	erManager	TaskTracker			
4	5		6	10			
Endpoint	End	Endpoint		Endpoint			
Supercompute	r aws	Cloud		🥳 Edge			
Worker		Worker		Worker			

- Serverless solves many problems but introduces new complexities to overcome
- Task placement is limited by the human element
- We can automate task distribution and remove the need for humans in optimization metrics and resource selection
- Delta+ relies on funcX to serve as a "serverless anywhere" framework to enable the use of modern distribution and heterogeneity

Contact—mbaughman@uchicago.edu

