
Resource Management
for Dynamic Function Distribution
with Parsl and Work Queue

Douglas Thain, Ben Tovar,
Thanh Son Phung, and Barry Sly-Delgado
Parsl / FuncX Workshop, 27 October 2021

Parsl + Work Queue for Scalable Apps

2

http://ccl.cse.nd.eduhttp://parsl-project.org

Powerful Pythonic Workflow
Programming Model

Scalable, Portable, Robust
Distributed Execution

Local Filesystem Execute Tasks
Remotely

on Local Disk

System Architecture

Parsl Python Interface

Parsl Data Flow Kernel

Parsl / WQ Executor

Work Queue Manager
Worker

$$$

Generate Funcs

Order Functions
(Futures)

Functions -> Tasks

Schedule Tasks

WorkerWorkerWorkerWorkerWorkerWorker

Thousands of Workers
on National Cyberinfrastructure

HTCondor, PBS, SLURM, Amazon,
Blue Waters, OSG, XSEDE...

TaskTaskTaskTask

TaskA B
AB

Configuring Parsl + WQ

import parsl

from parsl.executors import WorkQueueExecutor

config = parsl.config.Config(

 executors=[

 WorkQueueExecutor(

 label="wq-parsl-app",

 port=9123,

 project_name="wq-parsl-app",

 shared_fs=False,

 full_debug = True,

)])

Common Challenges

Two common problems of scaling up:

● What resources should be assigned to a function call?
● What software dependencies does this function need?

How can we solve these problems automatically at
runtime, without requiring the user to make advance
declarations?

Packing Functions Into Manycore Nodes

Work Queue Worker

FA

Python WorkflowPython App

Parsl DFK

Work Queue Manager

FA FB

FA FA FA

FAFA
FAFAFAFA

FBFBFBFB

12 cores and 12 GB RAM

Allocate 2GB per Function A?

Packing Functions Into Manycore Nodes

Work Queue WorkerPython WorkflowPython App

Parsl DFK

Work Queue Manager

FA FB

FA FA FA

FAFAFAFA

FBFBFBFB

Allocate 4GB per Function A?

12 cores and 12 GB RAM

Packing Functions Into Manycore Nodes

Work Queue WorkerPython WorkflowPython App

Parsl DFK

Work Queue Manager

FA FB

FA FA

FAFAFAFA

FBFBFBFB

Mix Function A and Function B?

FB

FB

FB

12 cores and 12 GB RAM

Python Interpreter

How to measure a single function call?

9

LFM - Lightweight Function Monitor

import A import B

function

LFM

import A import B

function

LFM
fork (COW)

Resource Usage
import A import B

function

LFM

import A import B

function

LFM

Tim Shaffer, Zhuozhao Li, Ben Tovar, Yadu Babuji, TJ Dasso, Zoe Surma, Kyle Chard, Ian Foster, and Douglas Thain,
Lightweight Function Monitors for Fine-Grained Management in Large Scale Python Applications, IEEE International
Parallel & Distributed Processing Symposium, May, 2021. DOI: 10.1109/IPDPS49936.2021.00088

Ben
Tovar

Lightweight Function Monitors (LFMs)

10

Activate LFMs with an import and the @monitored keyword

Example: Colmena-XTB Application

Thanh
Son Phung

Application:
XTB ./xtb-run.sh

Application Framework:
Colmena

Scheduler:
Work Queue

Workflow Manager:
Parsl

@agent
 def producer(self):
...
@agent
 def consumer(self):

Worker Node 1

Worker Node 2

Tasks:
● Are of two types:

inference and
simulation

● Display significant
differences in
resource consumption

Thanh Son Phung, Logan Ward, Kyle Chard, Douglas Thain, "Not All Tasks are Created Equal: Adaptive Resource Allocation
for Hetergeneous Tasks in Dynamic Workflows", WORKS Workshop at Supercomputing 2021.

Memory Consumption of Colmena-XTB’s
Tasks

Tasks can consume as low as 2
GBs or as high as 30 GBs of RAM!

Problem Solution

Bucket tasks with similar consumption
and allocate new tasks accordingly.

K-means Bucketing

Buckets progressing over time

Memory
(GBs)

10

20

30

Bucket 1
Bucket 2
Task’s
consumption

Task T
Bucket 1
blue line

1st allocation

allocate Bucket 2
orange line

Time Flow
2nd allocation

Whole
Machine

last allocation

If fails,
allocate

If fails,
allocate

Manager Environment

Run Time Dependency Management

work_queue_worker

FA

Python Workflow

FB

Python App

Parsl DFK

Work Queue Manager

FA FB

Conda
Pkgs Pip

Pkgs

Local
Src

How do we ensure that all the tasks get a consistent,
minimal environment matching the manager?

Barry
Sly-Delgado

Poncho Toolkit

The Poncho Toolkit allows users to create
and deploy self contained Python
environments at user level in arbitrary
distributed systems via a JSON
specification file.

● poncho_package_analyze
● poncho_package_create
● poncho_package_run

"conda":{
"channels":[

"defaults",
"conda-forge"

],
"packages":[

"ndcctools=7.3.0",
"parsl=1.1.0",

]
},
"pip": [

"topcoffea"
]
"git": {
 "DATA_DIR": {
 "remote": "http://.../repo.git"
 }

https://cctools.readthedocs.io/en/latest/poncho/

https://cctools.readthedocs.io/en/latest/poncho/

Manager Environment

Run Time Dependency Management

work_queue_worker

FA

Python Workflow

FB

Python App

Parsl DFK

Work Queue Manager

FA FB

JSON
Specification

poncho
package
analye

Package per Task

poncho_package_create

JSON Specification

tgz
Environment Tarball

poncho_package_run

Conda environment
Pip packages
Cloned repos
Fetched Files

work_queue_worker
Activate
environment
for each task.

Task
This required modest changes to the
Parsl+WQ Executor to wrap each task
invocation with additional files and
commands.

Package per Worker

poncho_package_create

JSON Specification

tgz
Environment Tarball

poncho_package_run

Conda environment
Pip packages
Cloned repos
Fetched Files

work_queue_worker

Activate
environment
once for
whole
worker.

Task
Task

Task
TaskThis requires modest changes to whatever method

is used to deploy workers on the batch system, to
modify the worker command and input files.

First Look: Orders of Magnitude
poncho_package_create

Application No Versions Specified All Versions Specified

TopEFT 2940s 170s

SHADHO 257s 159s

poncho_package_run

Application Size compressed Size unpacked Unpack Time

SHADHO 438MB 1.4GB 12s

TopEFT 594MB 2GB 21s

Colmena-XTB 1.4GB 4.8GB 46s

Next Steps...

● Do we really need all this code just to run a function? (maybe)
● Understanding the dependencies actually used by a function

execution, and how they evolve over time.
● Extending dependency detection to other kinds of resources:

databases, executables, file system resources...
● Closing the loop on application configuration: capture

discovered resource configurations from multiple runs and use
to predict future runs.

● Conveying known application categories from top to bottom
through software stacks.

End to End Integration Testing

conda-forge dropped support for python 3.6,
resulting in attempts to install taking forever
while conda tries to solve an unsolvable
dependency problem!

End-to-end daily test that simply installs
parsl+workqueue and runs a trivial example out
of the manual to see if it gets the right result.

For More Information…

22

https://cctools.readthedocs.io
https://ccl.cse.nd.edu/software/workqueue

btovar@nd.edu

bslydelg@nd.edu

tphung@nd.edu

dthain@nd.edu

Quick Start:
conda install -c conda-forge python=3.9 ndcctools parsl

https://cctools.readthedocs.io
http://ccl.cse.nd.edu/software/workqueue

